Sunday, January 14, 2024

FACTORISATION IMPORTANT CLASS 8

 FACTORISATION IMPORTANT

BY AARISH SIR

1. Express the following as in the form of (a+b)(a-b)

(i) a2 – 64

(ii) 20a2 – 45b2

(iii) 32x2y2 – 8

(iv) x2 – 2xy + y2 – z2

(v) 49x2 – 1

Solution:

For representing the expressions in (a+b)(a-b) form, use the following formula

a2 – b2 = (a+b)(a-b)

(i) a2 – 64 = a2 – 8= (a + 8)(a – 8)

(ii) 20a2 – 45b2 = 5(4a2 – 9b2) = 5(2a + 3b)(2a – 3b)

(iii) 32x2y2 – 8 = 8( 4x2y2 – 1) = 8(2xy + 1)(2xy – 1)

(iv) x2 – 2xy + y2 – z2 = (x – y)2 – z= (x – y – z)(x – y + z)

(v) 49x2 – 1 = (7x)2 – (1)2 = (7x + 1)(7x – 1)

2. Verify whether the following equations are correct. Rewrite the incorrect equations correctly.

(i) (a + 6)2 = a2 + 12a + 36

(ii) (2a)2 + 5a = 4a + 5a

Solution:

(i) (a + 6)2 = a2 + 12a + 36

Here, LHS = (a + 6)2 = a2 + 12a + 36

Now, RHS = a2 + 12a + 36

Hence, LHS = RHS.

(ii) (2a)2 + 5a = 4a + 5a

Here, LHS = (2a)2 + 5a = 4a2 + 5a

Now, RHS = 4a + 5a

So, LHS ≠ RHS

Correct equation: (2a)2 + 5a = 4a2 + 5a

3. For a = 3, simplify a2 + 5a + 4 and a2 – 5a

Solution:

Substitute the value of a = 3 in the given equations.

a2 + 5a + 4 = 32 + 5(3) + 4 = 9 + 15 + 4 = 28

And,

a2 – 5a = 32 – 5(3) = 9 – 15 = -6

Long Answer Type Questions:

4. Find the common factors of the following:

(i) 6 xyz, 24 xy2 and 12 x2y

(ii) 3x2 y3, 10xy2 and 6x2 y2 z

Solution:

(i) 6 xyz = 2 × 3 × x × y × z

24 xy2 = 2 × 2 × 2 × 3 × x × y × y

12 x2y = 2 × 2 × 3 × x × x × y

Thus, the common factors are common factors of 6 xyz, 24 xy2 and 12 x2y are 2, 3, x, y and, (2 × 3 × x × y) = 6xy

(ii) 3x2 y3 = 3 × x × x × y × y × y

10x3 y2 = 2 × 5 × x × x × x × y × y

6 x2 y2 z = 3 × 2 × x × x × y × y × z

Now, the common factors of 3x2 y3, 10xy2 and 6x2 y2 z are x2, y2 and, (x2 × y2) = x2 y2

5. Factorize the following expressions:

(i) 54x3y + 81x4y2

(ii) 14(3x – 5y)3 + 7(3x – 5y)2

(iii) 15xy + 15 + 9y + 25x

Solution:

(i) 54x3y + 81x4y2

= 2 × 3 × 3 × 3 × x × x × x × y + 3 × 3 × 3 × 3 × x × x × x × x × y × y

= 3 × 3 × 3 × x × x × x × y × (2 + 3 xy)

= 27x3y (2 + 3 xy)

(ii) 14(3x – 5y)3 + 7(3x – 5y)2

= 7(3x – 5y)2 [2(3x – 5y) +1]

= 7(3x – 5y)2 (6x – 10y + 1)

(iii) 15xy + 15 + 9y + 25x

Rearrange the terms as:

15xy + 25x + 9y + 15

= 5x(3y + 5) + 3(3y + 5)

Or, (5x + 3)(3y + 5)

6. Factorize (x + y)2 – 4xy

Solution:

To solve this expression, expand (x + y)2

Use the formula:

(x + y)2 = x2 + 2xy + y2

(x + y)2 – 4xy = x2 + 2xy + y2 – 4xy

= x2 + y2 – 2xy

We know, (x – y)2 = x2 + y2 – 2xy

So, factorization of (x + y)2 – 4xy = (x – y)2

7. Factorize x2 + 6x – 16

Solution:

To factorize, it should be checked that the sum of factors of 16 should be equal to 6.

Here, 16 = -2 × 8 and 8 + (-2) = 6

So,

x2 + 6x – 16 = x2 – 2x + 8x – 16

= x(x – 2) + 8(x – 2)

= (x + 8) (x – 2)

Hence, x2 + 6x – 16 = (x + 8) (x – 2)

8. Solve for (4x2 – 100) ÷ 6(x + 5)

Solution:






= ⅔ (x – 5)

TRY THESE ALSO

  1. Factorise:
    (а) 14m5n4p2 – 42m7n3p7 – 70m6n4p3
    (b) 2a2(b2 – c2) + b2(2c2 – 2a2) + 2c2(a2 – b2)
  2.  The area of a rectangle is 6a+ 36a and 36a width. Find the length of the rectangle.
  3. What are the common factors of the following terms?
    (a) 25x2y, 30xy2
    (b) 63m3n, 54mn4

No comments: